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Abstract

The Word Embedding Association Test (WEAT) is a popular model for measuring word associations
in text corpora (e.g., biases, stereotypes, schemas). WEAT-like measurement models aim to estimate the
difference in association between two concepts indexed by keyword lists over a set of word embeddings. I
show that they do not consistently estimate this quantity. The underlying metric, mean cosine similarity,
cannot discern what all of the keywords have in common: in keyword lists with at least four words, the
metric does not guarantee that every sub-list containing at least three words is closest in association to
itself. For this to be true, the Euclidean distance between at least one of the word pairs would have to
be negative. The metric is geometrically inconsistent in the sense that this is impossible. The degree
of inconsistency is partially predictable from the conditioning of the cosine similarity matrix. The
inconsistency of mean cosine similarity is explained in comparison to a multidimensionally consistent

similarity metric.
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The Word Embedding Association Test (WEAT) is a popular method for measuring word associations in
large text corpora using word embeddings (1).! WEAT is modeled on the Implicit Association Test (IAT) in
social psychology (2); like the IAT) it is meant to estimate differences in association between concepts encoded
in keyword lists. However, WEAT-like measurement models do not consistently estimate this quantity.
Given two keyword lists of cardinality k that are subsets of a word vector space (A, B C W), the similarity
metric underlying WEAT—mean cosine similarity (MCS)—is best understood as a certain estimator of the
expected unidimensional word association: on average, how much does any pair of individual words {A,, B;}
have in common? This is a mathematically and conceptually distinct quantity from multidimensional word
association: how much do all of the words in A and all of the words in B have in common? This paper
explains why these two seemingly similar word association estimands must not be confused.

I demonstrate that the MCS metric is inadmissible as an estimator of multidimensional word association.
Specifically, MCS is not geometrically consistent: given any list with more than three words, the metric is
not guaranteed to determine that all of the sub-lists are closest in association to themselves, resulting in
a geometrically self-contradictory measure. I contrast MCS with a multidimensional similarity metric for
word associations with close links to canonical correlation analysis (3): the sum of the squared cosines of
the principal angles between the subspaces spanned by the two word lists. I refer to this quantity as the
canonical subspace metric.

Table 1 compares the performance of the two estimators on the ten WEAT measures of semantic bias
presented in the original paper (see Materials and Methods). MCS-based WEAT measures tend to be inflated
related to the canonical subspace metric. The MCS estimate for WEAT 8 is closest in magnitude but has
the opposite sign. The median error in magnitude is approximately 4.2 times the corresponding canonical
subspace metric, but magnitude errors in the other direction are possible. Additionally, the nested difference
in means design of the test masks variation in the list-pairwise similarity metrics. MCS correctly estimates
the order statistics for the four pairwise comparisons only for one test (WEAT 10).

To explain why MCS is an inconsistent estimator for multidimensional word association problems, this
paper compares the two similarity estimators in greater mathematical and conceptual detail. I define what
it means for a multidimensional similarity metric to be geometrically inconsistent; explain how canonical
correlation analysis yields a consistent metric; and show that mean cosine similarity does not. I illustrate

the difference with respect to a comparison between the “male” and “female” words in WEAT 7 and the

'Word embeddings are low-rank approximations to bivariate word association measures in text corpora. Embedding al-
gorithms typically factor sparse n x n matrices of word association statistics into two dense rank p vector spaces Wgr, Ws
corresponding to the row and column spaces of the underlying measure. In practice, researchers use W = Wpx as the word
vector space, or sometimes W = Wx + W when the underlying measure is assumed to be symmetric. The results in this paper
are agnostic to the choice of embedding algorithm.



“pleasant” and “unpleasant” words in WEAT 5 (see Table S1) using publicly available GloVe embeddings
of English Wikipedia (4—6). In the supplemental materials, I provide results for other commonly used pre-
trained word embeddings and discuss a few WEAT-like measurement models that are widely used in applied
settings.

Minimality and geometric consistency in multidimensional similarity estimation. Many
research designs in applied statistical text analysis employ similarity metrics as estimators of word
association. A well-known requirement for geometric similarity measurement in this data analysis regime is

the minimality aziom, which states that any object z is most similar to itself (7):

Ve,y e Weid(z,y) > d(x,x) =0

This is really two statements: d(z,y) > d(z,z) and d(x,2) = 0. The inequality can be generalized to
multidimensional comparisons between subsets of W, but the zero-equivalence statement applies only to
points. If there were not a non-trivial similarity structure internal to subsets of W, we would not be willing
to accept the unidimensional metric in the first place. So, a multidimensional similarity metric should
allow the self-similarity to equal any scalar as long as this is the greatest similarity over all of the possible
comparisons.

The minimality inequality generalizes to many dimensions in the sense that it applies recursively to
every [1,k — 1]-dimensional comparison contained in any k-dimensional comparison. Define a multidimen-
sional similarity metric as geometrically consistent if every g-subset of any k-subset of the rows of a real
vector space W is more similar to itself than any other g-subset of the same k-subset. Formally, where
[W]*C4 denotes the set of g-subsets of some k-subset of W (k > ¢), then the following statement must be true:

i J

Vi, Vq < k : argsup Sim([W}kcq, [W]{?Cq) =1
J

In other words, if I choose any set of keywords, then every subset I can make by removing one or more words
from the set must be more similar to itself with respect to my chosen similarity metric than any of the other
subsets with the same number of words.

A proposed metric without this property is inadmissible because it is self-contradicting. Consider the
k-simplex with edges corresponding to the pairwise Euclidean differences between a set of vectors indexed

by any keyword list X. This k-simplex is bounded by a lattice of g-simplical subspaces formed by subsets of



X (g€ [1,k—1],q € Z). An admissible similarity metric must satisfy the minimality inequality with respect
to all of the g-simplices of equal dimensionality. As a concrete example, consider the tetrahedron formed by
X = {he, him, his, himself}. X has triangular faces X, = {he, him, himself} and X5z = {he, him, his}. X,
and X g coincide at the edge between {he, him}, so the dihedral angle between A and B is proportional to
the pointwise distance between {his} and {himself}. Now consider a proposed metric Simy,(-,-) that yields
the result Simy, (X 4, X4) < Simy, (X4, Xp5). This implies that the distance between {himself} and {his}
must be less than zero. Simyy, (-, -) is inadmissible because this is not possible.

Define the index of inconsistency 7, (Simy,(,-)) for a similarity metric over W as the proportion
of g-subsets of a keyword list of cardinality k£ in W that are most similar to themselves with respect to
Simy,(+,-). A geometrically consistent metric satisfies 7, ; (Simy,(-,-)) = 1 for any choice of ¢ and k up
to the ambient dimensionality defined by W. It is particularly worrisome if the expected value of 7 is
decreasing as k increases; adding more relevant keywords to an analysis should not make it less consistent.
The index of inconsistency is closely related to the regularity of the k-simplex induced by X. A helpful
heuristic discrepancy measure is the Euclidean condition number of X, which measures the elongation of its
hyperelliptical projection (8).

A canonical metric for multidimensional similarity. To construct a geometrically consistent
multidimensional similarity metric, define W (k) as the set of row subspaces spanned by k-subsets of the
rows of W. Denote the row space of W as R(W). For all subspaces A € W (k) consider the corresponding
orthogonal projector P(A) = A(AT A)~*AT. Then, equip W (k) with the symmetric bilinear form Simgg,., | :

W (k) x W(k) — R corresponding to the Frobenius inner product of the orthogonal projections (9-11):

Simeca, k(W W) = (P(W,), P(W,)) = tr(P(W,)TP(W,)).

Simgcy, i defines an inner product over the space of orthogonal projections onto R(W) (12). It is
always non-negative because the projection matrices are positive semi-definite. When the comparison is
one-to-one it is exactly equivalent to the squared cosine similarity between the two vectors. Unlike mean
cosine similarity, this quantity has the desired consistency properties with respect to the dimensionality of
the comparison. Simgay, (4, B) is constrained to lie between 0, indicating the subspaces share no common

direction, and p = min(rank(A), rank(B)), indicating the subspaces are isotropically aligned. The metric

can be scaled to lie between [0, 1] if we divide it by \/SimCCA; (W, W, )Simeca, (W, W), equivalent to
the geometric mean of the lengths of the underlying word lists. The dimensionwise alignment is equivalent
to the vector of singular values obtained by taking the singular value decomposition of the projection matrix

product; each singular value corresponds exactly to the cosine of the angle between the ith pair of singular



vectors. I refer to the total metric as the canonical subspace metric and its component quantities as the
canonical congruences.

The metric is very closely related to canonical correlation analysis, but there are two critical modifi-
cations. First, the analysis is carried out without recentering the subspaces, so it is not a local correlation
measure. We avoid recentering because we are working with a vector space, so the subsets of word vectors
we have selected into the analysis already share a fixed point at the origin. If we subtract their local means,
the overall difference in frequency of use between the two keyword lists distorts the resulting affine metric.?
Second, we carry out the analysis between row subspaces of the same vector space, rather than between the
column spaces of two matrices with rows corresponding to the same units. Rather than studying two sets
of measures on the same set of observations, we are studying two different sets of observations with respect
to the same set of measures, i.e. the variation we have estimated by the word embedding algorithm. The [0,
1] rescaled quantity has been discussed in many areas of multivariate analysis; in psychometrics it is called
Tucker’s congruence coefficient (14, 15), and in the French school of data analysis it is more often called the
RV coefficient (16, 17).3

Why does WEAT fail to measure multidimensional semantic association? To show that score
components in WEAT do not have the desired consistency property, it is helpful to review the design of the
test. WEAT is defined by two operations on the input word vector space W. First, the researchers selects
disjoint keyword lists of length k that appear in the vocabulary of W. This step is typically performed
using preset TAT keyword lists. Given a keyword list, WEAT selects the row vector in W with a label
corresponding to this word. As a running example, Table S1 lists the keywords for a WEAT measure
comparing the differential association between “male” or “female” words and “pleasant” or “unpleasant”
words.

Second, W is equipped with a bivariate association metric (cosine similarity) that quantifies the amount
of association between all k2 pairs of word vectors across two keyword lists. The WEAT measure is then
computed by taking the arithmetic mean of the k£ x k matrix of cosine similarities and comparing these

scores to the other three mean cosine similarities. Formally, let A, B,C, D be the subspaces of the row

2This can also be motivated from the perspective of the sparse high-dimensional word association measure approximated
by the word embedding matrix. The word vectors lie on the surface of a high-dimensional convex body in R™ that we have
mapped onto a hyperelliptical cross-section in R¥; this surface captures most of the variation in position in the larger space (13).
However, we must not forget that we are ignoring the remaining n — k dimensions. Imagine then that the word embedding
matrix W is missing n — k columns of zeroes. It is safe to omit these columns when we take the unidimensional cosine because
this does not affect the calculation of the angular metric once we have constructed the low-rank approximation. But, if we
recenter subspaces of W without remembering the remaining dimensions, the estimated centroids will be very far away from
the value we should have used, which is generally quite close to the zero vector.

3Kornblith and colleagues (18) propose using a kernelized version of this quantity to measure similarity between neural
network layers. This measure could be used if researchers were using word lists with cardinality larger than rank(W). In
practice, this is not necessary for word association problems of the scale targeted by WEAT-like models.



space of W induced by four mutually disjoint keyword lists of equal length k& < p.* Then the WEAT
score with respect to W4 p.o p is the grand mean difference in cosine similarities across {4, B} and {C, D}:
WEAT(A, B,C,D) = 1/k? Zf Z?(COS(AZ-, C;) —cos(A;, D;) + cos(B;, D) — cos(B;, C;).

Due to the symmetry in the test it is sufficient to characterize the behavior of k—lz Zf Zf cos(X,,Y;)
for any two disjoint and arbitrarily ordered word vector subsets X,Y C W of size k. Denote the subspaces
of R(W) spanned by X,Y as Wy, Wy.. Denote the power sets of X,Y as Pow(X),Pow(Y). Define the
similarity metric Sim (W, Wy ) between the subspaces corresponding to every g-subset in Pow(X), Pow(Y),
where ¢ € [1,k,—1]. As we increase k to the ambient dimensionality of W, the intersection of the orthogonal
complements of Wy and Wy eventually vanishes; that is, regardless of the choice of words, the two subspaces
will approach one-another until they coincide exactly once we hit the number of dimensions in the vector
space. If Simq(WX, Wy ) is geometrically consistent with respect to W, then this must also be true everywhere
on the lattice of similarity metrics defined by Pow(X), Pow(Y’) as g increases. Thus Sim (W, Wy-) must be
nondecreasing as we increase q. Reciprocally, if some values of Simq(WX, Wy ) are not nondecreasing in k,
then it cannot be geometrically consistent with respect to W.

Figure 1 demonstrates that the MCS estimator Sim" (7, J) := (1/k?) Zq:i Zq:j cos([W1k, [W];“) is not
geometrically consistent for ¢ > 3,k > 4. To show this, we must consider the lattice of all possible analyses
involving subsets of words in a keyword list A. Each column of heatmaps depicts the lattice of canonical
subspace metrics (left) mean cosine similarities (center panel) between every subset of the keyword list at
the top of the figure. Each cell of the heatmap corresponds to the metric over the corresponding g-subset. A
reasonable heuristic predictor of inconsistency is the 2-norm condition number of the cosine similarity matrix
(see Fig. 1; right panel); the lower this value, the more likely it is that a subspace of dimension ¢ will be
confused for one of its counterparts.

Figure 2 displays the canonical subspace metric (Fig. 2; left panel) and the corresponding MCS metric
(Fig. 2; center panel) over the lattice of comparisons between subsets of the keyword lists. In the right panel,
the full distribution of metrics corresponding to each heatmap is displayed; the dots indicate (in vertical
order) the maximum value, expectation, and minimum value of the metric over ¢. In the right panel only,
the mean of the squared cosine similarities is used to show the equivalence with the canonical subspace
metric for the unidimensional problem. The expectation of the MCS metric over all possible sub-analyses
of equivalent dimension is decreasing in the input dimension, while the expected canonical subspace metric
increases monotonically in the number of dimensions as desired. As the number of cosine similarity estimates

corresponding to the size of the analysis increases, the association between any pair of words already in the

4For brevity, I only consider the case of equal word list lengths. In general, multidimensional similarity cannot have
dimensionality exceeding the minimum cardinality of the input keyword lists.



list remains fixed with respect to the new words. This causes MCS to converge to the expected coplanar
angle in the input vector space as we increase k. In other words, MCS is a particular estimator of the
expected cosine similarity between any two vectors in X and Y, and it does not measure what or how much
all of the vectors have in common.

Figure 3 displays the canonical congruences for the four subspace pairs compared to the three possible
expected distributions of minimal common subspace alignment in W (k). The corresponding WEAT score
component for each metric is shown for comparison (MCS: dotted line; CCA: dashed line). Any comparison
implies three reference distributions: the distribution obtained by randomizing both keyword lists, and the
two distributions obtained by randomizing one list while holding the other fixed. There is no necessary
relationship between these distributions, so there are many different answers to the question of whether an
association is larger or smaller than what we would expect. One particularly interesting comparison is the
difference between the estimate’s relation to the two-way null and its relation to one or both of the one-way
nulls. The association can be simultaneously smaller than what we would expect by a two-way random
draw and larger than what we would expect by either one-way random draw, or vice-versa. There is no
necessary relationship between the rank index of the estimated congruences and their positions with respect
to their reference distributions; for example, only the eighth canonical congruence in the {male, unpleasant}
comparison is outside all three 95% prediction intervals.

Implications for word association measurement. WEAT-like measures are widely used in the
social sciences to measure a wide range of cultural processes observable in text that traditionally were
measured by human raters (19, 20). The key validity evidence for WEAT in this context is its agreement
with human word association ratings (i.e., the IAT and similar psychological test-based methods). However,
the convergent validity of the measure is weak evidence if it is not geometrically consistent. MCS does not
satisfy this criterion. In practice, the canonical subspace metric is always a more consistent estimator of the
targeted variation than MCS, and facilitates interpreting variation in the scale of observed associations in
applied research. A general conclusion is that researchers should not use mean cosine similarity as a measure
of multidimensional semantic association in applied statistical text analysis.

It is worth emphasizing that this result cannot be interpreted as evidence that stereotypes and biases
do not exist. The canonical subspace metric surfaces word associations between gendered identity words and
sentiment words with magnitude in excess of what we would expect from totally random selections of words.
The more fundamental problem is that it is not clear why we should define (e.g.) stereotypical association for
Black names with respect to white names, or biases against women with respect to men (21). The results in

this paper challenge the notion that there are unambiguously categorically opposed sets of words that would



justify this analytic approach. In some contexts male/female and white/Black are talked about as if they
are opposites, but this is only one limited perspective on the vast spectrum of similarities, differences, and
ambiguities indexed by gender and racial identity (22). Reliance on keyword lists as a priori representations
of “concepts” (“attributes”, “identities”, “schemas”; etc.) renders this measurement approach dependent on
the reader’s intuitive acceptance of the concept label, rather than evidence that the keywords specifically
pick out this concept. It is logically inconsistent to presume the meaning of words in advance of seeing their

contexts if we are trying to learn word meanings by observing the contextual use of language (24).
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Figures
Captions

Figure 1. Multidimensional similarity metrics within subspaces. Each column forms a lattice over the
set of comparisons between subspaces. Fach row increases the subspace dimensionality by one (top row
is 1, bottom row is 7). Red dots indicate the row/column maximum (note the matrices are symmetric).
A geometrically consistent similarity measure for multidimensional word association problems must locate
all of the maxima on the diagonal. The canonical subspace metric satisfies this criterion; the mean cosine
similarity metric does not (heatmaps, left panel). Geometric inconsistency is partially predictable from the
hyperelliptical elongation (condition number) of the k-simplex described by each cosine similarity matrix

(scatterplots, right panel).

Figure 2. Multidimensional similarity metrics between subspaces. Cell colors indicate more commonality
between subsets (heatmaps, left panel). The solid red (canonical subspace) and blue (mean squared cosine
similarity) lines indicate their respective expectations. The dashed lines indicate the maximum and minimum
values at each dimensionality. The canonical subspace metric increases as we gain more information about
the common semantics of the input word. When the word association problem involves only one-to-one
word pairings, the canonical subspace metric is equivalent to the squared cosine similarity. The mean cosine
similarity decreases toward the global mean as more words are added to the analysis, whereas the canonical

subspace metric increases.

Figure 3. Canonical congruences (red diamonds) with 95% prediction intervals for the one- and two-
way null distributions. Blue intervals correspond to the one-way null distributions holding the pleas-
ant/unpleasant lists constant while randomizing the male/female lists. Yellow intervals correspond to the
one-way null distributions holding the male/female lists constant while randomizing the pleasant/unpleasant
lists. Green intervals randomize both lists. The mean cosine similarity metric for each comparison is plotted

as the pink dotted line; the canonical subspace metric is plotted as the red dashed line.
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Tables
Captions

Table 1. Reanalysis of WEAT tests comparing mean cosine similarity metric (WEAT;~g) to canonical
subspace metric (WEAT ~~4). The test score is (Sim(A, C) 4+ Sim(B, D)) — (Sim(B, C) + Sim(A4, D)). The
values of the similarity metric components corresponding to each of the keyword list comparisons is displayed
in the eight columns on the right. The ratio of the two test scores (“Ratio”) tends to be larger than 1, so
Sim,;cg tends to overstate the difference in association. Sim,;-g also does not consistently estimate the
distribution of order statistics for the multidimensional word association problem: the median Spearman
rank correlation coefficient (p) between the mean cross-similarities is 0.4, and the ordering is correct only for
one test (WEAT10). The two metrics exhibit opposite behaviors as the minimum cardinality of the input

keyword lists (V) increases: Sim,;~g tends to shrink, while Sim -4 tends to grow.
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Materials and methods
Analytic procedure

The embeddings used in the paper are publicly available GloVe embeddings of Wikipedia (7). Table S2

provides the keyword lists. To ensure the word embedding vocabularies support each analysis, I manually



adjust the spelling of some of the words in the original paper (2). A summary of these adjustments in each
set of embeddings is also provided in Table S2. This is particularly important for the list of Black names
derived from the IAT (3), because many of the names in this word list appear to be misspellings and/or close
mispronunciations of Black names that are more common in the US context. For example, the list includes
the common Arabic given name “Aiesha,” but a far more common spelling of this name in the US context
is “Aisha.” The misspellings considerably affect the implementation of WEAT 3 in particular.

I reproduce the results in two alternative publicly available word embedding matrices: the Stanford
NLP GloVe embeddings of Wikipedia 2014 and Gigaword 5 text (4), and the skip-gram negative sampling
(i.e. word2vec) embeddings of Google News text (§). Figures S1-S3 rerun the figures in the paper with the
word2vec embeddings; Figures S4-S6 rerun the figures with the Stanford NLP GloVe embeddings. Note that
the substantive meaning of the cosine similarity metric differs somewhat between the two spaces because the

GloVe embeddings use the W + C' representation and the word2vec embeddings use only the W matrix.

Computing the canonical subspace metric

The metric can be computed in R using the built-in CCA function cancor with the centering parameters
set to False. In practice, if the canonical congruences are not of direct interest for the analysis (i.e. we only
want to quantify the total amount of commonality), then it is not necessary to compute a singular value
decomposition. Instead, it is faster to sum all of the values in the matrix obtained by computing the

Hadamard (entrywise) product of the two projection matrices.

Supplementary text
On cosine similarity

Cosine similarity in the usual sense is a ratio of the Euclidean dot product between two vectors to the
scalar product of their Euclidean norms: Z - 4/||Z||5]|7||5. It measures the amount of covariance between the
two vectors that is in excess of what would be expected if they varied independently. The square of this
quantity can be interpreted as the amount of variation retained when projecting one word vector onto the
span of the other.

The widespread use of cosine similarity in the statistical measurement of word associations is at-
tributable to the influential work of Gerard Salton and colleagues on information retrieval in large text
document databases (6). However, there is a subtle but importance difference in research goals between the
two enterprises. Information retrieval is concerned with optimally finding relevant documents, so it does not

place very much weight on how the search is performed as long as it performs well — that is, we care about



what we retrieve, and how we retrieve it is only interesting to the extent that we find good matches. In
contrast, the measurement of word associations in the social sciences is more or less pursuing the opposite
goal: what we retrieve is only interesting insofar as we can say we have a measure of the thing we are
interested in. Cosine similarity is a satisfactory plug-in heuristic for a range of prediction problems, but once
we are interested in measurement, we must be much more precise about the relationship between what we
mean and what our metrics say. This paper points out that this precision is particularly important if we are
interested in many-to-many comparisons.

A key limitation of this quantity as a tool for data analysis is the moniker “cosine similarity.” Such a
ratio can be computed between any two vector-valued arguments, so the “cosine” in question can be many
different things. Thus the term hides important variation in what it is used to measure, particularly when
the arguments are initially derived from the same vector space but are pre-transformed in various ways
before it is computed.

Notably, researchers frequently describe cosine similarity as “the dot product of the vectors after they
have been normalized to unit length” (2). However, this statement is very misleading, because cosine
similarity does not define an inner product space over the input word vector space due to the normalizing
transformation. Adding estimated cosine similarities does not consistently aggregate information about linear
combinations of the component vectors. The cosine similarity space {W,Sim_.} is a transformation of the

usual inner product space defined by the Euclidean dot product {W, -} such that every point on the bilinear

form is locally weighted by 1/+/(W,, W,) (W,, W,). This space is scale invariant and linear in each argument
only under a stringent condition on W; specifically, the Euclidean dot product between two vectors must

equal negative one-half their respective norms everywhere in the vector space:
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A shorthand for this assumption is that W must be isotropic for cosine similarity to define an inner

p(AA, B) =

product over W. Addition and multiplication over cosine similarities are not defined in the conventional way
unless W is isotropic, and it is not possible for W to be isotropic. To see why, define the index of isotropy
Iso(X) to be the dimension of the largest isotropic subspace of X (8). To establish that an inner product
space is anisotropic with respect to the inner product operator @), it suffices to show that Iso(X) =0, i.e,

that X contains no self-orthogonal subspaces of dimension 1. This condition holds trivially for all popular



word embedding models because their codomain is RP, so the dot product between any vector and itself is
strictly greater than zero.

Applying the arithmetic mean to Sim,, . despite this contradictory premise has an important substantive
consequence: adding words to the inducing keyword lists always moves the representation toward generality
rather than specificity. As k increases, the mean cosine similarity converges in probability to the expected
cosine between two vectors in R? irrespective of the specific choice of input subspaces and basis dimensionality.
This is the opposite of what we want the metric to do. The number of ways a set can be partitioned is
proportional to the cardinality of the set, so as we add more words to a word list, the number of ways that
they can be associated increases. Consequently, if the word list is converging to a specific concept, we should
gain more information about what we mean by adding to the word list, and not less.

One interpretation of the mean cosine similarity is that it is an estimator of the expected association
between any two words in the input keyword lists. Unfortunately, this mean is only consistent for the
intended quantity when one of the arguments is fixed (i.e., one of the keyword lists contains only one
word). If that condition holds, then the underlying angles can be interpreted as the central angles that
parameterize the subgroup of orthogonal rotations from the fixed vector to all of the vectors in the other
list. However, the Euclidean arithmetic mean cosine is a biased estimator of the mean Euclidean rotation.
The bias is proportional to the difference between the number of vectors in the analysis and the square root
of the determinant of the arithmetic sum of the corresponding rotation matrices. See (9) for more detailed
discussion.

There are parametric significance tests for dependent correlation and congruence coefficients based on
the Fisher Z-transformation (10). In the paper, I prefer to compare each metrics to the 95% prediction
interval obtained by randomizing one or both of the input word lists. There are two reasons for this. First,
I think the comparison to randomization provides a more intuitive way of understanding uncertainty in
the word association problem than the distributional result. For example, the prediction intervals could
be discretely interpolated toward the observed metric by randomizing only a subset of the words in either
list; this could be used to ascertain the leave-one-out sensitivity of the comparison. Second, because the
input metric is intrinsically multidimensional, our uncertainty about it is also hypervolumetric; treating our

uncertainty about the canonical subspace metric as a scalar interval obscures this fact.

Varieties of WEAT-like measurement models

In practice, researchers sometimes design WEAT-like analyses with two modified versions of the MCS

metric. First, the original metric takes the grand mean of the matrix of cosine similarities between A



and B, so each word vector A occurs in k& comparisons. Researchers sometimes employ a paired estimator
WEAT, (A, B) that uses only a one-to-one comparison between the subspaces, so that each word vector occurs
in just one angle. Second, the original measure constructs the matrix of cosine similarities with respect to
each vector in A and B separately. Researchers sometimes use the centroid estimator WEAT (A, B) that
substitutes the centroid C(B) for B so that the score reflects the mean cosine similarity of every vector in
A with C(B). In this section I denote the original estimator WEAT( (A, B) to reduce ambiguity. I discuss
the relationship between all of these modeling decisions and the notion of “frequency bias” in much greater
detail below.

Both methods introduce additional drawbacks. In particular, the centroid estimator WEAT (A, B) is
a poor representation of the targeted subspace in high dimensions. Locally, for all subspaces A the centroid
for B does not induce a separable neighborhood with respect to A. Define the local neighborhood of C(B)
to be the rank-ordered vector of cosine similarities between C(B) and A U B, and define Sep(A|C(B)) =
inf; rank(cos C(B), A;) to be the smallest rank statistic of this neighborhood corresponding to a vector in
A. The distribution of Sep(A|C(B)) is parameterized by k: as we add more word vectors to the centroid, it
gets closer to A and further from B! Globally, the centroid is not especially close to its subspace in high-
dimensional vector spaces because it does not lie on the hyperelliptical manifold defined by the input vector

space. The number of multidimensional subspaces that are closer to C(B)) than B is 4 (np—!

m, where np

is the number of word vectors W, € W satisfying cos(C(B)), W;) > sup, rank cos(C(B)), B;). For example,
if £ = 2 and there are two vectors in closer alignment with the centroid than the less associated of the two
subspace vectors, there is one subspace closer to the centroid than B. This number grows very quickly in
ng and k.

Numerically, the paired estimator WEAT, (A, B) often fares somewhat better than the typical metric,
because it reduces the impact of overcounting high-similarity word pairs on the analysis. However, this
comes at a steep cost: this estimator is not invariant to permutations of the input keyword lists. Thus we
will get a different answer if we use (say) {he, him, his, himself} or {he, him, himself, his}. This renders the

analysis entirely dependent on the researcher’s choice of pairings.

On IAT keyword lists

The scientific provenance of the WEAT keyword lists reveals some conceptual ambiguity in the relation
between word lists and their labels. The lists are derived from keyword lists used in the IAT (3). The
keyword lists for “pleasantness” were taken from a study of word association ratings elicited from college

students in the mid-1980s (16). These words were in turn derived from a book of word frequencies authored



in the 1940s (17). They narrowed down the initial list by having students rate each word using a pleasant-to-
unpleasant Likert item for each word. Other word lists were taken from an earlier study of college students
published in 1969 (18). In this study, the procedure is reversed: students are given the category word only,
and are asked to write down related words for 30 seconds. Consequently, in some cases we have gone from
category label to keyword list, and in other cases we have gone from keyword list to category label. This
raises the question why the label is treated as a category or concept to which the other words belong, and

not as another word in the list.

Frequency bias in cosine similarity regression

Previously, some researchers have observed that WEAT-like measures are predictable from the underly-
ing word frequency information. This is often called frequency bias. This section characterizes the frequency
bias phenomenon in a wide range of regression model specifications using the normalization weight function
(i.e. the scalar product of the Euclidean norms of the input vectors). In general, frequency bias is a prob-
lematic way of describing the distortion in the estimator. For most applications the corpus frequency has
already been used to estimate the word embeddings, so predicting the MCS metric from the corpus frequency
is in some sense double-dipping into the data. More to the point, the problem is not really that the measure
is biased by frequency per se, but that it is not a consistent estimator for the multidimensional quantity it
aims to estimate. The frequency-predictable distortion in regression models employing the MCS metric as a
variable is better understood as a prevalent symptom of this more fundamental validity issue.

I begin with the simplest case (one cosine similarity) and add analytic complexity progressively to
explore the class of cosine similarity regressions (CSR). For the most part researchers have been using the
more complex models; the binary case is useful for understanding where the model begins to distort. I
discuss three subclasses of the model family in more depth:

1. The centroid cosine similarity regression comparing estimated word vectors to Euclidean centroids of
sets of vectors;

2. The overlapping cosine similarity regression, in which the same vector appears in more than one
cosine in the outcome; and

3. The multivariate cosine similarity regression incorporating at least one cosine-valued independent
variable, potentially implying additional overlap structures and subspace isotropy assumptions.

Each of these design choices results in a measurement model that makes strong assumptions about the
geometric relationship between the vectors that are chosen for analysis, and combining them results in a

much more complex pattern of frequency distortion. Although I employ an omitted variable bias perspective



to characterize the econometric properties of these models, I hasten to emphasize that this perspective is a

bit misleading, as it is not really possible to “correct” the “bias” without using a different metric.

Binary difference-in-cosines. In the simplest case researchers may wish to compare a set of cosine
similarities constructed between two overlapping or analogous sets of word pairs (i.e., three or four sets of
word vectors). I first discuss the non-overlapping case involving cosines with no recurring component vectors.
The most basic summary quantity is the difference in mean cosine similarity, cos(4;, B;) = of + o X, + ¢,
where X, is a binary variable partitioning the word pair sets. The estimated coefficient o is interpreted
as a potentially significant difference in the mean cosine similarity, indicating a substantively meaningful
difference in linguistic association between the two groups.

The binary difference-in-cosines is a limiting case of a general relative similarity model where distances
in the inner product space are evaluated relative to its £, projection. Estimating this model implies two very
strong assumptions about the error distribution of the inner product: its distribution with respect to the
overall scale of the vector space, and its distribution in the subspaces on each side of the analysis. This can
be seen more transparently by multiplying both sides of the model equation by the normalization weight

LNW,, which describes the scale of the association at every point in the vector space:

cos(4;,B;) = of + o X, + ¢
<Aia Bz> * *
TNw, o taiite

(A, B;) = afLNW, + ot X,LNW, + ¢,LNW,

(A, B;) = 0 LNW, + o X,LNW, + ¢,LNW,

+ o+ o X,

The constrained model omits the two terms highlighted in red by fixing them to 0: an intercept term of and
a term for the main effect of X; estimating the original model oj. It also implicitly assumes that the error
term ¢; has scale-dependent error. Most importantly, the interpretation of the af is revealed to be (under
most conditions) an estimate of a linear interaction between the normalization weight function and the input
partition.

There are a few interconnected problems with the model as an estimator of aj that can be characterized
from an omitted variable bias perspective (19). First, the missing intercept term o forces the line of best
fit to pass through the origin. This leads to poor model fit in most practical data analysis settings. When

working with word vectors, the distribution of vector norms is bounded away from zero, so this constraint



lies strictly outside the support of the data. Additionally, the inner product is only small/negative when the
normalization weight is increasing, meaning the implicit frequency adjustment estimated by cosine similarity
regression tends to have the wrong sign. The variance of the model is also likely to be high due to its
strong dependence on the observations with large outlying errors on the tails of the normalization weight
distribution.

Second, the missing main effect term aj.X; distorts the estimated difference in means by requiring the
trends in each group to converge at the intercept. This also forces the groupwise normalization weighting
estimates to have the same sign. In practice this can result in a global normalizing adjustment that is
nearly orthogonal to the local (subspace-specific) conditional distribution of the inner product in ¢,. This
constraint also implies a conditional difference in means that is maximally distinct when the normalization
weight increases. This tends to be the opposite of what we see in semantic vector spaces; we observe a wider
range of inner product values when the normalization weight is low, and the scale-conditional difference
tends to be driven by the low-norm-weight vectors. In practice, the difference in the marginal distribution
of the inner product of a set of points with two focal vectors tends to be close to zero, particularly if the
number of vectors in the analysis is small.!

A generalized (unconstrained) model of the conditional association, the local inner product regression,

allows the missing intercept and main effect terms to covary with the inner product:

(A;, B;) = By + 51 X; + B, LNW, + B, X,LNW, + v,

Note that in this model the focus is no longer on the coefficient on X, as in the cosine similarity regression
model. In practice there are a large range of values of 3;, but the estimate tends to be high-variance.
Instead, the target of inference is the interaction effect (5, which tells us how different the distance-size
relationship is between the two groups. Informally, the model estimates a difference in the total amount
of association between two sets of vector pairs dictated by the comparative design X that corrects for the
conditional dependence of the inner product distribution on the vector norm distribution due to the design.
The coefficients B4 and (84 + f5) can be interpreted as an estimate of the mean “similarity” (i.e. the mean

distance-size association) in the two groups, and S5 reflects the difference in the size of this relationship.

A closely related specification adds an interaction with the inverse normalization weight into the original

IThis provides some intution for why centering the vector space is a very effective way of improving the meaningfulness of
cosine-based measures: both of these model constraints are more reasonable when the vector space passes through the origin.
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model with cosine similarity as the dependent variable:

1 X,
cos(A;, B;) = By + B3 X, + By INW. + By INW. + 1

The numbering of the coefficients reflects the relationship between this model and the inner product regression
coefficients; both equations estimate the same model, although each model imposes a different interpretation
on the coefficients that correspond to each other: 3, and [(; swap interpretations as the coefficient on
the grouping variable X and the coefficient on the group-scale interaction term, while 8, and By swap
interpretations as the intercept and the coefficient on the scaling variable. The key difference in the models
is whether the estimation focuses on the normalization weight or its reciprocal, equivalent to deciding whether
the analysis should be performed on the original vector space or its canonical cosine-normalized projection.

An advantage of this corrected ratio model is the error term 7;. The error term of the inner product
regression is by assumption a function of the normalization weight (v, = ¢,LNW,) whereas the corrected
model need not make this assumption (20). This means that the inner product regression is typically the
more heteroskedastic estimator. In general the two models give similar results, so the practical implications of
this difference are small, although the fit of one model tends to be better. When the inner product regression
is preferable, a heteroskedasticity correction can be employed to compute standard errors. Researchers can
also directly examine the change in error variance over the normalization weight distribution using the typical
Lagrange multiplier test or a related analysis (23).

A natural next question is whether the lower-order terms for the vector norms that make up the
local normalization weight should be included in the model. Depending on the research design this may
introduce exact multicollinearities into the corrected inner product regression. A common issue is that
the researcher has chosen sets of word vectors that imply different relative word frequency distributions,
leading to the commonly observed “frequency bias” in the measure (26). In practice the similarity structure
determines how this frequency heterogeneity impacts the estimate of interest. This is because the design of
the comparison may lead to word vectors and their norms reoccurring in multiple model terms. I will discuss

this issue further as it arises in the context of other models in the cosine similarity regression family.

Some useful decompositions. Total scale distortion. The frequency-related distortion between 3; and o
can be decomposed into terms reflecting the contribution of the omitted intercept and the omitted main effect

of the grouping variable, modified by the partial effect on the outcome of, respectively, the normalization

11



weight function and the group-conditional normalization weight function (22):

. COU(Xl', ﬁwl) CO'U(Xi, ngl(\;\/,)
o =By + By (M) s (UCW(XZ)

The decomposition shows why it is usually helpful to think of the relationship to frequency in terms of
distortion rather than as a bias in the model per se. Even in the simplest case, there are multiple sources
of distortion that can cancel out or amplify depending on the particular dataset we happen to be working
with. This means that the coefficient o can be close to 3; even when the amount of distortion due to each
omission is comparatively large. Typically 5, and the lower-order partial effect are positive, so this situation

arises when the signs of 85 and cov(X conflict. The absolute amount of distortion is usually a better

measure of total “bias” than the equation above suggests due to this property of the uncorrected ratio model.
In practice, because researchers construct more complex word association models, this can be difficult to
tease apart analytically.

Local similarity estimation. The inner product regression model factors out a subspace-specific propor-
tion of the inner product that is (by assumption) not predictable from the normalization weight distribution.
This quantity is like cosine similarity, but comes with estimate of the amount each group of inner products
should be discounted prior to applying a similarity interpretation. To see this, consider the inner product
regression model when X, = 0: (A;, B,) = B, + BoLNW, + v,. This model implies that up to some error
and minus an estimated adjustment 3,, (4, B;) o< B, LNW,. (3; and 5 provide the additive intercept and
slope changes for the X, = 1 case.) In other words, by moving the normalization weight function to the
other side of the model, the analysis pivots to estimating two different similarity functions over the local
inner product subspaces implied by each group of vectors, rather than assuming that these distributions are
known in advance.

This partition of the inner product suggests conceptualizing similarity as an operation that discounts
the estimated inner product by some group-specific amount and applies the normalizing projection only to
the proportion of the variation in the inner product that we have estimated we can attribute to the variation
in normalization weights. An observation-wise similarity coefficient can be produced by subtracting the
estimated group-specific intercept of the inner product regression from each observation’s inner product,

then dividing this quantity by the normalization weight for this observation:

(A;, B;) — (By + 81 X;)
1A 1111B;]|

Simlocal (Aw Bz) =
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The difference between this quantity and cos(A4,;, B;) is a curvilinear function of the normalization weight
(recall the dual interpretation of 3, as the lower-order normalization weight coefficient in the ratio model),
and the lower-order coeflicient on the normalization weight in the component model 3, is an estimate of
the mean of this distribution. Notice that sim ., (A4;, B;) = (8y + 8, X;)/[|A;|||B;]| is also a similarity
coeflicient. In other words, another way of writing the cosine similarity when there is a known grouping is
in terms of a decomposition into a local similarity component and a global discrepancy component that can

be estimated from the data:

COS(Aia Bz) = Simlocal(Ai7 Bz) + 6(‘415 Bl)

Assuming that 5, = 8; = 0 in the uncorrected cosine similarity regression forces the second similarity term
to zero. This amounts to an assumption that all of the similarity between A and B must be related to
the grouping variable. The main consequence of this assumption is that cos(4;, B;) is always inflated with
respect to the grouping if the ratio is computed in the global basis. Employing the corrected model makes
it possible to recover an estimate of simy,.,;(A4;, B;) that allows some of the global similarity to be unrelated

to the local comparison the model is meant to test.

Weight function measurement error. A recurrent feature of this type of analysis is that the local
normalization weight function is estimated from the same data as the inner product. One could reasonably
object to this procedure. In the context of regression analysis, when the local normalization weight is
introduced into the other side of the model, the model fit will usually increase (depending on sample size,
etc.). Some of this added explanatory power is due to the fact that the normalization projection errors are
correlated.? External estimates of word frequency (e.g. the Corpus of Contemporary American English) can

be used to show that using external word frequency information results in qualitatively similar but high-

2A closely related issue is that word embedding analyses are sensitive to the intrinsic frequency-based selection in the
word count sampling procedure. The large number of low-frequency words implies an unobserved set of related words that
could have been included, and there is a steep bias-variance tradeoff involved in selecting the minimum frequency window.
Both issues motivate considering an external word frequency estimate. Researchers usually use the observed word count above
a threshold in a corpus of documents as a plug-in estimate of the probability of observing a word, but this estimate is itself
frequency-dependent because there is heightened measurement error in the low frequency region and a sharp discontinuity at the
threshold. The threshold is the part of the remaining vector space that is the most affected by the size-biased sampling problem.
An implication of this idea is that cutting off the model at a fixed threshold can seriously impact the qualitative interpretation
of the model, because this region of terms is also more specific on average. When the research goal is to measure concepts by
identifying subspaces of the vector space, it is important to consider how qualitative interpretations of this space are affected by
perturbations to this threshold. Additionally, denominator measurement error results in biased estimates, particularly when it
is associated with X; (29). This situation also creates difficulties for frequency adjustment because we do not usually have an
external group-specific frequency estimate. In general researchers should prefer the heteroskedastic estimator because this model
expresses an expectation that a similarity measure over word vectors “should” have frequency-dependent projection errors.

13



variance point estimates of the inner product regression model. Consequently researchers will tend to see a
considerable jump in R? and changes in the substantive and statistical significance of estimated quantities

of interest when any credible estimate of word frequency is added.

Centroid cosine similarity regression. In applied settings, researchers tend to operationalize concepts
of interest by using fixed word lists to induce an entire set of related word vector pairs. To represent con-
cepts as discrete mathematical objects, researchers aggregate the set of vectors that results from a word
list into a centroid and use the cosine similarity to it as a quantity of interest. To continue our gender-
sentiment analysis example from above, we would now be interested in estimating quantities involving (say)
cos(Q2(A B

and cos(2A fepminine)s By where Q(w) indicates the Euclidean cen-

masculine)? unpleasant) leasant)’

troid of the corresponding vector set. This strategy appears commonly in applied settings; although tempt-
ing, in general it tends to intensify the frequency distortion relative to a direct analysis of the component
vectors.

Comparisons of this type can be factored into a set of inner products between the j, k selected sets of
component vectors in the original vector space. The case with one additional vector, cos(A+ B, C), provides
a useful basic case to show how this analytic choice contributes to frequency distortion. First, observe that
the normalization weight function implied by adding the vectors includes the pairwise component vector

inner products:

cos(A 1 B.C) = >, (A + By)(C;)
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Note that g(A;, B;) is a function of the inner product between A and B in addition to their respective norms.

This leads to a different expansion of the uncorrected cosine model into the inner product regression:

cos(A; + B,,C;) =af + a3 X, +¢;

(4, + B;,C;) .
INW(A T B,0) @0t oaXite
(A; + B;,C;) = ofLNW(A+ B,C) + o X,LNW(A + B,C) + ¢,LNW(A + B, C)
(A; + B;, C;) = agg(A;, By) |G| + a1 X;9(A;, By) |G| + v,

+ay + a3 X, + ajg(A;, By) + af

c,

+ a5 X,;94 (A, B) + a7 X, |||

Including an additional vector on one side of the cosine ratio outcome implies a model that omits four
additional variables by fixing their coeflicients to zero. In addition to the missing intercept and lower-order
grouping variable term as in the binary analysis, a key issue is determining whether the components of the
normalization weight have distinct (conditional) associations with the transformed inner product.

A particularly common version of this model arises when the collection of cosine similarities is derived
from comparisons of centroids composed of j word vectors to members of a set of n word vectors, where

|A| > |B| = 1. (The paper by Nelson [2021] is an example of this type of model.) Extending to j vectors:

>, 2 [T, X2

_ Zi(AlXi + .. +Ain)
VI e+ A5 X

¢Z<Z 0, = %Z I3 +2 3 (9,,0,.).

cos(Ay + ... + A;, X) = cos(Q, X) =

i JsJ*
LNW(Q, X) = \/z 19,03+23 <Qj,gj*>\/ﬁ
j YNE 7

This cosine similarity is a weighted average of the inner products between the target vector X and each of the
component vectors {2;. The normalization weight is a function of the squared norms of each of the component
vectors and their pairwise inner products with each other. Observe two facts about this weight. First, in
each inner product the familiar normalization weight [|€2,[|[|€2,.]| reappears again. Second, adding the jth
word vector to €2 implies adding j — 1 more comparisons to the weight function. Pre-composing the word

vectors in A to facilitate the comparison to each X, thus implies computing all of the pairwise inner products
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<AZ-, Aj>, but without accounting for the uncertainty associated with this measure. The corresponding inner

product regression is as follows:

cos(€2, X;) =75+ D; + ¢

(Q;, X;) = LNW(Q;, X;) + v, D,LNW(Q,, X;) + v;+7, + 73D,

ij jir X \/Z|Q||2+2; >\/§

+ ’Y1Di\/z 11€2,113 + QZ (Q, Qj*>1 /sz‘z + v+ + 73D
J A i

The left hand side of the model decomposes into a sum of the component inner products. The implicit model

for a given comparison can be constructed by moving the j — 1 alternative comparisons to the right hand

side of the regression equation:

(2, X,) WZWHHZ@,%\/W
2,J% g
+wlni¢§jnﬂj|%+2Z<Qj»ﬂj*>ﬁ
J J5J% ¢

+ 7 +3D; + v,

+ & (QH X)) 4+ +571< (1), Xi>

The inner product regression and the constrained/uncorrected model alike assume that the linked inner
product coefficients are all equal; this is equivalent to assuming that the corresponding subspace is totally
isotropic. Additionally, the zero conditional mean error assumption in this model also requires the errors of
these distances to be mutually uncorrelated. This is a very stringent set of assumptions.

Note that the frequency distortion in cosine similarity induced by pooling the A vectors and constructing

normalization weights in this way is not addressed by correcting the normalization weight adjustment. The

the comparison as constructed cannot differentiate whether the coeflicient ~y; reflects the grouping of vectors
X, corresponding to Q% or the scale of the subspace they inhabit. This relates to the question of whether a
model of similarity should allow ||A|| and || B|| to have separable associations with the inner product. I will

discuss this issue in depth in the context of a more complex bivariate model.

Centroid cosines are anisotropically weighted estimates of the subspace mean cosine similarity.

How should researchers think about the isotropy assumption implicit in comparing quantities like cos(€2, X;,)?
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One way to break down this model is to think of it as a specific estimate of the subspace-specific (i.e. condi-
tional) mean cosine similarity E[cos(€2;, X;)|J = j] implied by the word vectors that make up the composed
vector, or alternatively [E[(Qj, XZ-> |LNW,;,J = j]. This simple comparison clarifies what it would take for

the centroid model to be no more frequency distorted than the simple mode:

S (;ZQ]“XJ Zcos jin X
J

<%Z]‘jS7Xi> 1 (Q,X,)

— ]Z?

IN7U llllXl N 45 HQ--HIIX-H

72 Q]l7X> Z J’L?
N & |IN71, QJZIIIIXII N H%HIIXH

NZHN z ﬂ NZ ||js3’

JZII

D INTLY

_7'L7
T @)=y e

jill

jill

The centroid cosine similarity (to a unit reference vector) is a weighted mean of the component inner products.
For the centroid to describe the subspace associations without distortion, the weights ,;; = %
must be distributed with mean one; that is, the centroid must lie in an approximately isotropic subspace.
By construction this assumption is not met in word embedding analysis. Because the scale distortion is
complex, a large number of situations may result in approximately zero net bias. On average the distortion
in the estimator increases with the number of components in the mean vector; mean vectors are mechanically
shortened by the number of component vectors, resulting in a lower scale ratio due to the researcher’s choice
of subspace size (i.e. number of component vectors). The centroid cosine model tends to overstate the mean
subspace cosine as a result.

A minimal alternative procedure is to estimate a separate model for each of the j variables in the
composed vector, so that the model parameters can vary from comparison to comparison rather than pre-
suming a single fixed parameter across the entire set. This has the advantage of considerably simplifying
the interpretation of the normalization weighting procedure. The inclusion of the {; terms is also suggestive
of the bivariate cosine regression (i.e. on average, how mutually predictable are the pairwise distances in €2

to X, conditional on frequency?). Alternatively, researchers could estimate a multivariate linear model with

the set of inner products as the outcome vector, which combines both approaches.

Bivariate cosine similarity regression. Researchers sometimes estimate a linear relationship between

two sets of cosine similarities directly. For example, we might model the cosine similarity between masculine
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and pleasant words as a linear function of the similarity between feminine and unpleasant words. This leads

to another set of omitted variable constraints:

cos(4;, B;) =75 + 77 cos(Cy, D;) + ¢;
(A, B;) = 7 LNW(A;, B;) + v cos(C;, D;)LNW(A;, B;) + v;
+ 72 + 73 cos(Cy, D;) + W4LNV\771(CY:= D;) +75(C;, D;)

LNW(4;, B;)
Y7 7
LNW(C;, D;)

+ 76 (Ci, D) LNW(A;, B;) +
Informally, this model creates frequency dependence due to the ratio of frequency functions on each side of
the model, in addition to the intrinsic distributional shift on the left side alone. In addition to the zeroed
v, and 74 coefficients, the bivariate cosine similarity regression omits terms for the lower-order components
of the right cosine (v, v5). Additionally, 74 captures the potential interaction of the right inner product
with the left normalization weight; intuitively, this is an estimate of how different we think the distance
association is at different locations in the left frequency distribution. Analogously, ~, assesses whether there
is a difference in the scale association over the distribution of left normalization weights. These terms are
particularly important to include if the dependent and independent cosines share a component word vector

(i.e. if the incorrect specification is of the form cos(A;, B;) = v + 71 cos(4,, C;) + ¢,;). This occurs often in

applied settings. I discuss this model in more detail below.

Bivariate centroid cosine similarity regression. The composed cosines {2° can be substituted into the

bivariate cosine regression to yield a combined model:

cos(Q4,Y;) = 45 + 7 cos(QF, X)) + ¢,
(04,Y;) = % LNW(Q4,Y;) + 7, cos(27, X, LNW(Q4,Y)) + v,

+ 7y + 73 cos(27, X;) 74LNVV’1(QB7 X)) + 75 (08, X))

LNW(Q4,Y;)
(OB, X)) LNW(Q4, Y, e
+’7()< ) Z> ( Z)+,‘}7LN“]<QB’X1)
Each of the right-hand inner product terms (7,73, 75, 7g) decomposes further into a sum of componentwise
inner products (teal terms below). In the uncorrected model all but «y; are zeroed out, but otherwise each of

these coefficients is forced to be equal across the marginal and joint inner product and left-hand normalization

weight distributions. Additionally, the model incorporates a left-hand centroid, so the isotropy constraint
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applies here as well (purple).

<QJA7 V) = % LNW(QAY)) + v,

+90 + 7 LNWHQE, X)) + 7 I]jg\\;v((g;,;))

+ 7y, cos(By, XﬁLN\V(QA., Y,) + 7 cos(Bs, )(Z-)IJ\TVV(QA7 Y,)+ ...
V3 cos(By, X;) + 73 cos(By, X;) + ...

+ 75 (B1, Xi) + 75 (By, Xi) + ..

+ 76 (B, X;) LNW(QA,Y,) + 74 (By, X;) LNW(QA,Y}) + ...

+ gl <sz Xz> +oet gjfl <Q£‘71),i7 Xz>

Overlapping cosine similarity regression. Up to this point I have assumed that the underlying word
vector sets are non-overlapping, but in practice researchers often construct overlapping comparisons, for
example the comparative association of masculine words with pleasant or unpleasant words. The behavior
of the model when the cosines on each side of the model share a reference vector (Y; = X;) is of special
interest. This is a common setup when the interest is in comparing how two concepts (represented by a set
of vectors or a composed vector) relate to a common set of words. The dependence structure in the local
normalization weight function implies that the lower-order interactions D,||w;|| and D,||X,|| and the main
norm terms ||w;|| and || X;|| are of interest. In addition the model assumes that the difference in distances is

completely controlled by the distance-scale association and that this association passes through the origin,

as in the simple case:

cos(w;, X;) = af + 4D, +¢;
(w;, X;) = «fLNW, + o D,LNW, + ¢,LNW,
(w;, X;) = ofLNW, 4 ¢,LNW,
+ a1 Dy [wy[[| X
+a; +azD;
A key limitation of the computation of the score is that it does not allow the contribution of the ||w,|| term to
vary; this makes the normalization weight terms of each individual difficult to interpret on their own, because
the lack of variance in the vector set implies we cannot estimate the uncertainty associated with applying

the norm weight in each model. The WEAT statistic S(X,Y, A, B) compares the difference in means of the

vectors of uncorrected interaction coefficients o (i), o (j) across the word sets X (i) and Y (j), resulting in a
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nested linear model. The sampling distributions of these coefficients are bilinearly correlated, and each of
the word sets generally imply different frequency distributions. This complex dependency structure in the

resulting nested model propagates the distortion in the component scores.

Overlapping bivariate centroid cosine similarity regression. Overlap may occur in the multivariate
and centroid models separately. For conciseness, I discuss only their joint interaction with overlap and do
not comment on the separate cases (overlapping centroid CSR; overlapping multivariate CSR). Continuing
the previous example, we may wish to compare two centroids Q4 and Q7 to the same set of vectors X. The
data for this comparison consist of a set of pairwise overlapping cosines, {cos(Q4, X;),cos(Q7, X;)},, and
the corresponding normalization weights are {||Q4|||| X, ||2Z]|||X;]|};- The key phenomenon to observe in
the model is that the normalization weight factor for the word vector X, cancels from the scale ratio terms

with coefficients v; and ~; (orange):

cos(Q4, X;) = 45 + 75 cos(QB, X,) + ¢,
<Q;4,XZ> = ’YOLNW(QA,XJ +v;
+72 + ULNWH(QF, X))
v5 cos(By, X;) + 5 cos(By, X;) + ...
+ Y5 (By, Xi) + 75 (Ba, Xi) + -
+ v (B, X;) LN\V(QA, Y,) + 76 (Bsy, X;) LNVV(QA, )+ ..

+&6 (LX) + -+ & <Qf§—1),z‘in>

+

The cancellation induced by this design implies that the linear model fails to identify the desired interaction
between the right-hand cosine and the left-hand normalization weights. The term ~; averages the three-way
interactions of the right-hand cosine with the left-hand normalization weight (v, 3); the right-hand inner
product with the scale ratio (75,77), or the second-order interaction of the right (reciprocal) normalization
weight and the interaction of the right inner product and the left normalization weight (v,,vs). But the
interpretation of the variable this coefficient refers to is not the same across the lower-order terms. Some

researchers employ a model of this type with an additional correlated cosine similarity regressor sharing the
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reference vector set X, leading to a trivariate (additive) composed cosine regression.

Figures

Google News word2vec
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Tables

Table S1: Gender-sentiment analysis in main paper.

Target concept | W,
“male male, man, boy, brother,
he, him, his, son
female female, woman, girl, sister,
she, her, hers, daughter
pleasant joy, love, peace, wonderful,
pleasure, friend, laughter, happy
unpleasant agony, terrible, horrible, nasty,
evil, war, awful, failure
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Table S2: Additional keyword lists. Words are lowercased when this is called for by the input

word embeddings; further adjustments listed.

Label ‘Words Adjustments

flowers aster, clover, hyacinth, marigold, poppy, azalea, crocus, iris, orchid, | gladiola — gladiolus
rose, bluebell, daffodil, lilac, pansy, tulip, buttercup, daisy, lily, peony,
violet, carnation, gladiolus, magnolia, petunia, zinnia

insects ant, caterpillar, flea, locust, spider, bedbug, centipede, fly, maggot,
tarantula, bee, cockroach, gnat, mosquito, termite, beetle, cricket, hor-
net, moth, wasp, blackfly, dragonfly, horsefly, roach, weevil

pleasant caress, freedom, health, love, peace, cheer, friend, heaven, loyal, plea-
sure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor,
miracle, sunrise, family, happy, laughter, paradise, vacation
unpleasant abuse, crash, filth, murder, sickness, accident, death, grief, poison,
stink, assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty,
ugly, cancer, kill, rotten, vomit, agony, prison

instruments bagpipe, cello, guitar, lute, trombone, banjo, clarinet, harmonica, man-
dolin, trumpet, bassoon, drum, harp, oboe, tuba, bell, fiddle, harpsi-
chord, piano, viola, bongo, flute, horn, saxophone, violin

weapons arrow, club, gun, missile, spear, ax, dagger, harpoon, pistol, sword, | axe — ax
blade, dynamite, hatchet, rifle, tank, bomb, firearm, knife, shotgun,
teargas, cannon, grenade, mace, slingshot, whip

career executive, management, professional, corporation, salary, office, busi-

ness, career

family home, parents, children, family, cousins, marriage, wedding, relatives

temporary impermanent, unstable, variable, fleeting, short-term, brief, occasional

permanent stable, always, constant, persistent, chronic, prolonged, forever

math math, algebra, geometry, calculus, equations, computation, numbers,
addition

arts poetry, art, dance, literature, novel, symphony, drama, sculpture

science science, technology, physics, chemistry, Einstein, NASA, experiment,
astronomy

arts poetry, art, Shakespeare, dance, literature, novel, symphony, drama

male brother, father, uncle, grandfather, son, he, his, him

female sister, mother, aunt, grandmother, daughter, she, hers, her
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mental illness
physical illness
male names
female names

white names

Black names

young names
old names

white names

Black names

sad, hopeless, gloomy, tearful, miserable, depressed

sick, illness, influenza, disease, virus, cancer

John, Paul, Mike, Kevin, Steve, Greg, Jeff, Bill

Amy, Joan, Lisa, Sarah, Diana, Kate, Ann, Donna

Brad, Brendan, Geoffrey, Greg, Brett, Jay, Matthew, Neil, Todd, Al-
lison, Anne, Carrie, Emily, Jill, Kristen, Meredith, Sarah

Darnell, Hakim, Jermaine, Kareem, Jamal, Leroy, Rasheed, Tremayne,
Tyrone, Aisha, Ebony, Keisha, Kenya, Latonya, Latoya, Tamika, Tan-
isha

Tiffany, Michelle, Cindy, Kristy, Brad, Eric, Joey, Billy

Ethel, Bernice, Gertrude, Agnes, Cecil, Wilbert, Mortimer, Edgar
Adam, Harry, Josh, Roger, Alan, Frank, Ian, Justin, Ryan, An-
drew, Fred, Jack, Matthew, Stephen, Brad, Greg, Paul, Todd, Bran-
don, Hank, Jonathan, Peter, Wilbur, Amanda, Courtney, Heather,
Melanie, Sara, Katie, Meredith, Shannon, Betsy, Donna, Kristin,
Nancy, Stephanie, Ellen, Lauren, Colleen, Emily, Megan, Rachel
Alonzo, Jamel, Lerone, Theo, Alphonse, Jerome, Leroy, Rashaan,
Torrance, Darnell, Lamar, Lionel, Rashaun, Tyree, Deion, Lam-
ont, Malik, Terrence, Tyrone, Lavon, Marcellus, Terrell, Wardell,
Aisha, Nichelle, Shereen, Tamika, Ebony, Latisha, Shaniqua, Jasmine,
Latonya, Shanice, Tanisha, Tia, Latoya, Sharice, Yolanda, Lashawn,

Malika, Tawanda, Yvette

deleted Laurie

deleted Lakisha

deleted Chip, Jed, Crys-
tal, Amber, Peggy, Wendy,

Bobbie-Sue, Sue-Ellen

deleted  Percell, Everol,
Lashelle, Teretha, Tameisha,
Lakisha, Shavonn, Tashika;
Rasaan — Rashaan, Ter-
ryl — Terrell, Aiesha —
Aisha, Temeka — Tamika,
Shanise — Shanice, Sharise
— Sharice, Lashandra —

Lashawn
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